Порядки

Гейдар Мамедов (9 класс), Михайловский Дмитрий (10 класс)

команда ЛНМО

В данной работе были полностью решены пункты 1,2,3,4,5 и предложены некоторые обобщения, применимые в пункте 6.

Содержание

1	Постановка задачи	1
2	Обозначения и определения	3
3	Основные методы	3
	3.1 Инварианты	3
	3.2 Пространство отверстий	4
4	Теоремы о сокращении	6
	4.1 Контрпримеры	10
5	Решение	10

1 Постановка задачи

Пусть M_1 и M_2 — два частично упорядоченных множества. Отображение $f: M_1 \longrightarrow M_2$ называется монотонным, если для любых $x,y \in M_1$ таких, что $x \leqslant y$, выполнено, что $f(x) \leqslant f(y)$, относительно порядка на M_2 . Монотонное отображение $f: M_1 \longrightarrow M_2$ называется изоморфизмом, если f биективно и обратное отображение $f^{-1}: M_2 \longrightarrow M_1$ также монотонно. Если между M_1 и M_2 существует изоморфизм, то будем говорить, что M_1 и M_2 изоморфны и писать $M_1 \cong M_2$.

1. Пусть $f: M \longrightarrow N$ — изоморфизм двух упорядоченных множеств. Покажите, что для любого $x \in M$ множество $M_{\leqslant x} = \{y \in M \mid y \leqslant x\}$ изоморфно $N_{\leqslant f(x)} = \{y \in N \mid y \leqslant f(x)\}.$

- 2. Опишите все изоморфизмы из $\mathcal{P}(X)$ в $\mathcal{P}(X)$, где $\mathcal{P}(X)$ множество всех подмножеств множества X, упорядоченных относительно включения \subseteq .
- 3. Пусть M_1 и M_2 два упорядоченных множества. Тогда введём на $M_1 \times M_2$ прядок следующим образом:

$$(x_1,y_1) \leqslant_{nat} (x_2,y_2)$$
 тогда и только тогда, когда $x_1 \leqslant x_2$ и $y_1 \leqslant y_2$.

Обозначим полученное упорядоченное множество как $M_1 \times_{nat} M_2$. Будем называть такой порядок естественным или покоординатным. Введём на $M_1 \times M_2$ другой порядок:

$$(x_1,y_1) \leqslant_{lex} (x_2,y_2)$$
 тогда и только тогда, когда $x_1 < x_2$ или когда $x_1 = x_2$ и $y_1 \leqslant y_2$.

Обозначим это упорядоченное множество как $M_1 \times_{lex} M_2$.

Покажите, что следующие упорядоченные множества не изоморфны между собой:

$$\mathbb{N}$$
, \mathbb{Z} , $\mathbb{N} \times_{nat} \mathbb{N}$, $\mathbb{N} \times_{lex} \mathbb{N}$, $\mathbb{Z} \times_{nat} \mathbb{Z}$, $\mathbb{Z} \times_{lex} \mathbb{Z}$, \mathbb{Q} .

4. Изоморфны или нет следующие множества:

$$\mathbb{Q}$$
, \mathbb{R} , $\mathbb{Q} \times_{lex} \mathbb{R}$, $\mathbb{Z} \times_{lex} \mathbb{R}$, $\mathbb{R} \times_{lex} \mathbb{R}$, $\mathbb{R} \times_{lex} \mathbb{R} \times_{lex} \mathbb{R}$?

5. Какие из следующих множеств изоморфны:

$$(\mathbb{Z} \times_{lex} \mathbb{Z}) \times_{nat} \mathbb{Z}, \quad \mathbb{Z} \times_{lex} (\mathbb{Z} \times_{nat} \mathbb{Z}), \quad (\mathbb{Z} \times_{lex} \mathbb{N}) \times_{nat} \mathbb{Z}?$$

- 6. Рассмотрите предыдущий вопрос, когда сомножителей больше чем три, "скобки" можно расставлять произвольным образом и на произведениях можно ввести операцию одним из двух описанных выше способов.
- 7. Опишите все изоморфизмы между найденными парами изоморфных упорядоченных множеств.

2 Обозначения и определения

Пусть (X, \leq) – частично упорядоченное множество. Различные элементы $x,y\in X$ называются соседними, если верна импликация

$$x \leqslant z \leqslant y \implies x = z$$
 или $z = y$.

Элемент $y \in X$ называется предшествующим элементу $x \in X$, если $y \leqslant x$ и x,y – соседние. В линейно упорядоченном множестве (X,\leqslant) мы пишем $A \leqslant B$ в том и только в том случае, когда верна импликация

$$x \in A, y \in B \implies x = y.$$

Через $\mathbb I$ мы обозначаем множество всех иррациональных чисел с соответствующим линейным порядком. Если $x\leqslant y$ и x не равно y, то мы пишем x< y. Определим отрезок [a,b] как множество всех таких c, что $a\leqslant c\leqslant b$. Через $\mathbf 0$ обозначим пустое множество с соответствующим линейным порядком, через $\mathbf 1$ обозначим одноэлементное подмножество $\{0\}$ целых чисел, через $\mathbf 2$ – подмножество $\{0,1\}$ и так далее. Через $\mathbf n$ мы обозначаем подмножество $\{0,1,\ldots,n-1\}$ целых чисел с соответствующим отношением порядка.

3 Основные методы

3.1 Инварианты

Опишем все свойства частично упорядоченных множеств (X, \leq) , которые сохраняются при изоморфизме. Эти свойства выражаются только в терминах отношения \leq , поэтому и являются инвариантами.

Линейность. Частично упорядоченное множество (X, \leq) называется линейно упорядоченным, если любые два элемента $x, y \in X$ сравнимы: $x \leq y$ или $y \leq x$.

Существование наименьшего/наибольшего элемента. Элемент $x \in X$ называется наименьшим, если $\forall y \in X \ x \leqslant y$. Аналогично определяется наибольший элемент.

Существование минимального/максимального элемента. Элемент $x \in X$ называется минимальным, если верна импликация: $y \leqslant x \implies y = x$. Аналогично определяется максимальный элемент.

Существование предельного элемента. Элемент $x \in X$ называется предельным (слева), если множество $\{y \in X \mid y \leqslant x\}$ не пусто, но у x нет предшествующего элемента.

Плотность. Частично упорядоченное множество (X, \leq) называется плотным, если в нём нет соседних элементов.

Счётность. Множество X называется счётным, если существует биекция $f: X \longrightarrow \mathbb{N}$.

Аксиома полноты. Линейно упорядоченное множество (X, \leq) удовлетворяет аксиоме полноты, если для любых непустых подмножеств A, B в X верна импликация

$$A \leqslant B \implies \exists \xi \in X : A \leqslant \xi \leqslant B.$$

Широкость. Будем говорить, что частично упорядоченное множество X является широким вправо, если для любого $x \in X$ существует такое $y \in X$, что x < y. Аналогично определяется широкость влево. Под широкостью будем понимать одновременную широкость вправо и влево.

3.2 Пространство отверстий

Чуть подробнее остановимся на акисоме полноты. Полнота $\mathbb R$ выводится из аксиом. Любое конечное множество полно. Множество $\mathbb Z$ полно: если $A\leqslant B$, то возьмём в качестве ξ наибольший элемент в A. Множество $\mathbb Q$ не полно: $A=\{x\in \mathbb Q\mid x>0,\ x^2<2\}\leqslant B=\{x\in \mathbb Q\mid x>0,\ x^2>2\}$, но единственное число $\sqrt{2}$ между A и B не является рациональным.

Пусть X — линейно упорядоченное множество. Рассмотрим множество всех таких пар непустых подмножеств (A,B) в X, что $A\leqslant B$ и не существует такого $\xi\in X$, что $A\leqslant \xi\leqslant B$. Обозначим его за H(X). Очевидно, что H(X) пусто тогда и только тогда, когда X удовлетворяет аксиоме полноты. На множестве H(X) введём отношение следующим образом: $(A,B)\leqslant (C,D)$, если $A\leqslant D$.

Предложение. Введённое отношение ≤ является отношением предпорядка, то есть рефлексивно и транзитивно.

Доказательство. Рефлексивность: Пусть $(A,B) \in H(X)$. Тогда $A \leqslant B$, то есть $(A,B) \leqslant (A,B)$. Транзитивность: Пусть $(A,B),(C,D),(E,F) \in H(X)$ и $(A,B) \leqslant (C,D),\ (C,D) \leqslant (E,F)$. Докажем, что $A \leqslant F$. Так как на X задан линейный порядок, то достаточно показать, что верна импликация $f \leqslant a \Rightarrow f = a$. Действительно, пусть $f \leqslant a$ для $a \in A$ и $f \in F$. Так как $(A,B) \leqslant (C,D)$, то $a \leqslant D$. Теперь возьмём $c \in C$. Если $a \leqslant c$, то (так как $C \leqslant F$) $a \leqslant f$, то есть, a = f. Если же $c \leqslant a$ для всех $c \in C$, то $C \leqslant a \leqslant D$, что противоречит тому, что между C и D ничего нет. Итак, мы показали, что $A \leqslant F$.

Введём на множестве H(X) отношение эквивалентности следующим образом: $(A,B)\sim (C,D),$ если $(A,B)\leqslant (C,D)$ и $(C,D)\leqslant (A,B).$ Легко

понять, что оно рефлексивно и транзитивно, а симметричность следует из самого определения.

Рассмотрим фактормножество $\operatorname{Holes}(X) = H(X)/\sim$. Из определения \sim следует, что $\operatorname{Holes}(X)$ вместе с индуцированным на фактормножество отношением \leqslant является линейно упорядоченным множеством: рефлексивность и транзитивность следует из доказанного утверждения, а антисимметричность следует из определения \sim . Мы называем $\operatorname{Holes}(X)$ пространством отверстий линейно упорядоченного множества X. Мы ввели это определение специально для того, чтобы можно было далее воспользоваться основой теоремой о пространстве отверстий.

Теорема. Если $X \cong Y$, то $\operatorname{Holes}(X) \cong \operatorname{Holes}(Y)$.

Доказательство. Пусть $f: X \longrightarrow Y$ — изоморфизм. Тогда определим $g: \operatorname{Holes}(X) \longrightarrow \operatorname{Holes}(Y)$ по правилу $(A,B) \longmapsto (f(A),f(B))$.

Так как мы определяем функцию из фактормножества $H(X)/\sim$ в $H(Y)/\sim$, то требуется доказать корректность определения функции g (то есть показать, что g является функцией). Возьмём два представителя $(A,B)\sim(C,D)$ одного и того же класса эквивалентности. Покажем, что класс эквивалентности g((A,B)) в $H(Y)/\sim$ совпадает с классом эквивалентности g((C,D)). Действительно, так как $A\leqslant D$ и $C\leqslant B$, то $f(A)\leqslant f(D)$ и $f(C)\leqslant f(B)$, поэтому $g((A,B))=(f(A),f(B))\sim(f(C),f(D))=g((C,D))$, что и требовалось. Значит, g – функция.

Кроме того, нужно доказать, что если $(A,B) \in \text{Holes}(X)$, то $(f(A),f(B)) \in \text{Holes}(Y)$. Действительно, если $A \leq B$, то $f(A) \leq f(B)$. Если $f(A) \leq \xi \leq f(B)$, то $A \leq f^{-1}(\xi) \leq B$, поэтому между f(A) и f(B) ничего не может быть.

Теперь покажем, что g изоморфизм. По-первых, если $g((A,B)) \sim g((C,D))$ (то есть $(f(A),f(B)) \sim (f(C),f(D))$), то $f(A) \leqslant f(D)$ и $f(C) \leqslant f(B)$, откуда $A \leqslant D$ и $C \leqslant B$ (так как f^{-1} тоже изоморфизм) и $(A,B) \sim (C,D)$. Значит, функция g инъективна. Во-вторых, если $(C,D) \in \operatorname{Holes}(Y)$, то, как нетрудно проверить, $(A,B) = (f^{-1}(C),f^{-1}(D)) \in \operatorname{Holes}(X)$ и g((A,B)) = (C,D). Значит, g сюръективна. В-третьих, если $(A,B) \leqslant (C,D)$, то $A \leqslant D$, поэтому $f(A) \leqslant f(D)$ и $g((A,B)) = (f(A),f(B)) \leqslant (f(C),f(D)) = g((C,D))$. Значит, g монотонна. Аналогично доказывается, что g^{-1} монотонна. Таким образом, g изоморфизм и теорема доказана.

Пример. Легко проверить, что следующие множества изоморфны

 $\operatorname{Holes}(\mathbb{N}) \cong \mathbf{0},$ $\operatorname{Holes}(\mathbb{Z}) \cong \mathbf{0},$ $\operatorname{Holes}(\mathbb{Q}) \cong \mathbb{I},$ $\operatorname{Holes}(\mathbb{I}) \cong \mathbb{Q},$ $\operatorname{Holes}(\mathbb{R}) \cong \mathbf{0},$ $\operatorname{Holes}(\{1, 2, \dots, n\}) \cong \mathbf{0}.$

4 Теоремы о сокращении

Здесь мы описываем наши полезные результаты, которые могут быть использованы в пункте 6 для \times_{lex} .

Теорема 1. Пусть C – полное непустое широкое частично упорядоченное множество. Тогда на C можно сокращать справа:

$$A \times_{lex} C \cong B \times_{lex} C \iff A \cong B.$$
 (4.1)

Для доказательства теоремы мы сначала докажем три вспомогательных утверждения.

Лемма 1. Пусть [a,b] — отрезок в полном множестве X. Тогда он сам полон.

Доказательство. Пусть $A \leq B$ — непустые подмножества [a,b]. Так как $A,B\subseteq X$, то существует такое $\xi\in X$, что $A\leqslant \xi\leqslant B$. Из транзитивности \leqslant и того, что $a\leqslant A\leqslant B\leqslant b$, следует, что $\xi\in [a,b]$, что и требовалось доказать.

Лемма 2. Пусть $f: X \longrightarrow Y$ – изоморфизм. Тогда f([a,b]) = [f(a),f(b)]. Доказательство. Докажем равенство двумя включениями. Первое включение: пусть y = f(x) из f([a,b]). Тогда $a \leqslant x \leqslant b$. Так как f – изоморфизм, то $f(a) \leqslant f(x) \leqslant f(b)$, то есть $f(x) \in [f(a),f(b)]$. Второе включение: Пусть x из [f(a),f(b)]. Обозначим $y = f^{-1}(x)$. Так как $f(a) \leqslant x \leqslant f(b)$, то $a \leqslant y \leqslant b$ и $y \in [a,b]$. Тогда $x = f(y) \in f([a,b])$.

Лемма 3. Пусть $f: X \longrightarrow Y$ — изоморфизм, [a,b] — полный отрезок в X. Тогда f([a,b]) тоже полон.

Доказательство. Пусть $A \leq B$, где $A, B \subseteq f([a,b]) = [f(a), f(b)]$. Тогда $f(a) \leq A \leq B \leq f(b)$. Так как f — изоморфизм, то $a \leq f^{-1}(A) \leq f^{-1}(B) \leq b$. Так как [a,b] полон, то найдётся $\xi \in [a,b]$ такой, что $f^{-1}(A) \leq \xi \leq f^{-1}(B)$. Тогда $A \leq f(\xi) \leq B$, что и требовалось.

Доказательство теоремы 1. Если $f:A\longrightarrow B$ – изоморфизм, то пусть g отображает $A\times_{lex}C$ в $B\times_{lex}C$ по формуле g((a,c))=(f(a),c). Легко проверить, что это изоморфизм.

Обратно: пусть $f: A \times_{lex} C \longrightarrow B \times_{lex} C$ – изоморфизм. Если C пусто, то доказывать нечего. Зафиксируем $c_0 \in C$. Пусть $a \in A$ и $f(a, c_0) = (b, c)$. Тогда определим отображение $g: A \longrightarrow B$ по формуле g(a) = b. Проверим, что это изоморфизм.

 \triangleright Инъективность. Предположим, что g(x) = g(y) = b для $x, y \in A$ и $b \in B$. Тогда $f(x,c_0)=(b,c_1)$ и $f(y,c_0)=(b,c_2)$. Отрезок $[(b,c_1),(b,c_2)]$ можно отождествить с подотрезком в , а так как C полно, то по лемме 1 этот отрезок должен быть полным. С другой стороны, из леммы 3 следует, что $f^{-1}([(b,c_1),(b,c_2)]) = [(x,c_0),(y,c_0)] \subseteq A \times_{lex} C$ является полным. Если x не равно y, то возьмём два непустых множества X = $\{(s,t) \in A \times_{lex} C \mid x \leqslant s < y, \ c_0 \leqslant t\} \text{ if } Y = \{(y,t) \in A \times_{lex} C \mid t \leqslant c_0\}.$ Легко видеть включение $X,Y\subseteq [(x,c_0),(y,c_0)]$. Покажем, что $X\leqslant Y$ и что между X,Y нет элементов отрезка. Действительно, пусть $(s,t) \in X$ и $(y,t') \in Y$. Тогда s < y, то есть $(s,t) \leqslant (y,t')$ и $X \leqslant Y$. Теперь допустим, что $X \leqslant (\xi_1, \xi_2) \leqslant Y$. Возьмём некоторые $(s, t) \in X$ и $(y, t') \in Y$. Если $\xi_1 = y$, то по широкости C найдётся такой z, что $z < \xi_2$. Так как $\xi_2 < t' \leqslant$ c_0 , то $(\xi_1, z) \leqslant (\xi_1, \xi_2)$ и $(\xi_1, z) \in Y$, что невозможно. Теперь допустим, что $\xi_1 < y$. Тогда $s \leqslant \xi_1$. По широкости C найдётся такой z, что $\xi_2 < z$. Тогда $c_0 \leqslant t \leqslant \xi_2 < z$, поэтому $(\xi_1, \xi_2) \leqslant (\xi_1, z)$ и $(\xi_1, z) \in X$, что невозможно. Значит, ничего между X и Y нет. Следовательно, x = y.

 $ightharpoonup Cюръективность. Пусть <math>y \in B$. Возьмём некоторое $t \in C$ и рассмотрим $r = f^{-1}(y,t) \in A \times_{lex} C$, где r = (a,c). По аналогичным рассуждениям (C широкое и т.п.), если $f(a,c_0) = (y',c_0')$ и y не равен y', то образ (лемма 2) $[(y,t),(y',c_0)]$ полного (лемма 1) отрезка $[r,(a,c_0)]$ не будет полным, что противоречит лемме 3. Значит, y' = y и $f(a,c_0) = (y,c_0')$, то есть g(a) = y.

ightharpoonup Монотонность. Пусть $x \leqslant y$ из A и $f(x,c_0) = (x',c_1), f(y,c_0) = (y',c_2)$. Так как $(x,c_0) \leqslant (y,c_0)$, то, в силу монотонности $f, (x',c_1) \leqslant (y',c_2)$, то есть $g(x) = x' \leqslant y' = g(y)$.

ightharpoonup Монотонность обратной функции. Пусть $x' \leqslant y'$ из B, причём $g^{-1}(x') = x$ и $g^{-1}(y') = y$. Так как $f(x, c_0) = (x', c_1) \leqslant (y', c_2) = f(y, c_0)$, то, подействовав функцией f^{-1} , мы получим неравенство $(x, c_0) \leqslant (y, c_0)$, то есть $g^{-1}(x') = x \leqslant y = g^{-1}(y')$.

Таким образом, g — изоморфизм. Теорема доказана. В частности, в предыдущей теореме можно взять $C=\mathbb{Z},\mathbb{R}.$ Однако, множество \mathbb{N} не является широким, поэтому мы всё ещё не знаем, можно ли сокращать на \mathbb{N} справа. В ходе решения, используя наши знания о

Holes, нам удалось получить следующий результат.

Предложение. Пусть на X задан линейный порядок. Тогда существует изоморфизм

$$\operatorname{Holes}(X \times_{lex} \mathbb{N}) \cong \operatorname{Holes}(X).$$

Доказательство. Линейность на X требуется для корректности определения Holes. Выберем какого-нибудь представителя класса эквивалентности $(A,B) \in \operatorname{Holes}(X \times_{lex} \mathbb{N})$. Обозначим "покрытие" множества X множеством A за $A_X := \{x \in X \mid \exists n \in \mathbb{N} : (x,n) \in A\}$. Аналогично определим B_X . Тогда пусть φ отображает $\operatorname{Holes}(X \times_{lex} \mathbb{N})$ в $\operatorname{Holes}(X)$ по правилу $(A,B) \longmapsto (A_X,B_X)$. Проверим, что такое соотвествие осуществляет изоморфизм.

Сначала проверим, что φ является функцией. Пусть $(A,B) \sim (C,D)$. Так как $A \leq D$ и $C \leq B$, то $A_X \leq D_X$ и $C_X \leq B_X$, поэтому $(A_X,B_X) \sim (C_X,D_X)$ и $\varphi((A,B)) \sim \varphi((C,D))$.

Покажем, что $\varphi(A,B)=(A_X,B_X)\in Holes(X)$. Как уже было замечено, если $A\leqslant B$, то $A_X\leqslant B_X$. Осталось проверить, что между A_X и B_X ничего нет. Если $A_X\leqslant \xi\leqslant B_X$, то, легко проверить, $A\leqslant (\xi,1)\leqslant B$, что противоречит тому, что между A и B ничего нет.

Докажем, что φ – изоморфизм. Во-первых, предположим, что $\varphi(A,B) \sim \varphi(C,D)$ (то есть $A_X \leqslant D_X$ и $C_X \leqslant B_X$). Покажем, что $(A,B) \sim (C,D)$. Пусть $a=(a',n_1)\in A,\ b=(b',n_2)\in B,\ c=(c',n_3)\in C$ и $d=(d',n_4)\in D$. Так как $A_X\leqslant D_X$, то $a'\leqslant d'$; так как $C_X\leqslant B_X$, то $c'\leqslant b'$, то есть $A\leqslant D$ и $C\leqslant B$, что и требовалось. Значит, φ инъективна. Во-вторых, предположим, что $(C,D)\in \operatorname{Holes}(X)$. Определим $A=\{(c,n)\mid c\in C,\ n\in \mathbb{N}\}$ и $B=\{(d,n)\mid d\in D,\ n\in \mathbb{N}\}$. Легко проверить, что $(A,B)\in \operatorname{Holes}(X\times_{lex}\mathbb{N})$ и $\varphi((A,B))=(C,D)$. Значит, φ сюръективна. В-третьих, если $(A,B)\leqslant (C,D)$, то $A\leqslant D$, откуда $\varphi(A,B)=(A_X,B_X)\leqslant (C_X,D_X)=\varphi((C,D))$. Значит, φ монотонна. Аналогично доказывается, что φ^{-1} монотонна. Таким образом, φ является изоморфизмом и утверждение доказано.

Приняв во внимание основную теорему о пространстве отверстий, мы получаем что-то вроде слабой теоремы о сокращении на \mathbb{N} .

Следствие. Пусть на X и Y заданы линейные порядки. Если $A \times_{lex} \mathbb{N} \cong B \times_{lex} \mathbb{N}$, то $Holes(A) \cong Holes(B)$.

Доказательство. Достаточно подействовать Holes на изоморфизм $A \times_{lex} \mathbb{N} \cong B \times_{lex} \mathbb{N}$ и воспользоваться предыдущим утверждением.

На самом деле, после доказательства этого утверждения нам удалось получить куда более сильный результат — теорему о сокращении на $\mathbb N$ для произвольных частично упорядоченных множеств.

Теорема 2. На № можно сокращать справа:

$$A \times_{lex} \mathbb{N} \cong B \times_{lex} \mathbb{N} \iff A \cong B.$$
 (4.2)

Доказательство теоремы 2. Если $f:A\longrightarrow B$ – изоморфизм, то пусть g отображает $A\times_{lex}\mathbb{N}$ в $B\times_{lex}\mathbb{N}$ по формуле g((a,n))=(f(a),n). Легко проверить, что это изоморфизм.

Обратно: пусть $f: A \times_{lex} \mathbb{N} \longrightarrow B \times_{lex} \mathbb{N}$ – изоморфизм. Пусть $a \in A$ и f(a,1)=(b,n). Тогда определим отображение $g:A \longrightarrow B$ по формуле g(a)=b. Проверим, что это изоморфизм.

 \triangleright Инъективность. Предположим, что g(x) = g(y) = b для $x, y \in A$ и $b \in B$. Тогда $f(x,1) = (b,n_1)$ и $f(y,1) = (b,n_2)$. Отождествляя отрезок $[(b,n_1),(b,n_2)]$ с подотрезком в \mathbb{N} , мы получаем, что он должен быть конечным. Значит, $f^{-1}([(b,n_1),(b,n_2)]) = [(x,1),(y,1)] \subseteq A \times_{lex} \mathbb{N}$ является конечным множеством. Но если x < y, то мы легко найдём в нём бесконечное подмножество $\{(x,t) \mid t \in \mathbb{N}\}$. Значит, x = y.

ightharpoonupСюръективность. Пусть $y \in B$. Рассмотрим элемент $r = f^{-1}(y,1) \in A \times_{lex} \mathbb{N}$, где r = (a,n). По аналогичным рассуждениям (любой отрезок в \mathbb{N} конечен), если f(a,1) = (y',n') и y не равен y', то образ (лемма 2) [(y,1),(y',n')] конечного отрезка [(a,n),(a,1)] будет бесконечным, что невозможно. Значит, y' = y и f(a,1) = (y,n'), то есть g(a) = y.

ightharpoonup Монотонность. Пусть $x \leqslant y$ из A и $f(x,1) = (x',n_1), f(y,c_0) = (y',n_2)$. Так как $(x,1) \leqslant (y,1),$ то, в силу монотонности $f, (x',n_1) \leqslant (y',n_2),$ то есть $g(x) = x' \leqslant y' = g(y).$

ightharpoonup Монотонность обратной функции. Пусть $x' \leqslant y'$ из B, причём $g^{-1}(x') = x$ и $g^{-1}(y') = y$. Так как $f(x,1) = (x',n_1) \leqslant (y',n_2) = f(y,1)$, то, подействовав функцией f^{-1} , мы получим неравенство $(x,1) \leqslant (y,1)$, то есть $g^{-1}(x') = x \leqslant y = g^{-1}(y')$.

Таким образом, g – изоморфизм. Теорема доказана.

Важное замечание. Эта теорема может быть обобщена: мы пользовались только тем, что \mathbb{N} непусто, от каждого элемента $n \in \mathbb{N}$ можно построить бесконечную возрастающую (или убывающую) цепочку $n = x_1 < x_2 < \ldots$ и тем, что любой отрезок в \mathbb{N} является конечным. Так, мы обнаружили, что можно получить аналогичный результат (сокращение справа на C), если потребовать любое из следующих условий:

- C является широким влево или широким вправо и любой отрезок в C является конечным.
- С является широким влево или широким вправо и не содержит предельных слева или справа элементов.

В доказательстве биективности построенного отображения нам придётся пользоваться одним из этих условий. Но это не значит, что найденное нами условие сократимости на C является необходимым. Кроме того, мы не будем передоказывать эти утверждения.

4.1 Контрпримеры

Здесь мы покажем, что аналогичные теоремы о сокращении на $\mathbb N$ и $\mathbb Z$ слева не всегда верны.

Пример. Существуют изоморфизмы

$$\mathbb{N} \times_{lex} \mathbf{1} \cong \mathbb{N} \times_{lex} \mathbf{2}, \qquad \mathbb{Z} \times_{lex} \mathbf{1} \cong \mathbb{Z} \times_{lex} \mathbf{2},$$

но $1 \not\cong 2$.

Доказательство. Очевидно, что $A \times_{lex} 1 \cong A$. Легко проверить, что отображение f, заданное по правилу

$$f(n) = \left(\left[\frac{n+1}{2} \right], n \mod 2 \right)$$

осуществляет оба изоморфизма между указанными множествами.

Для $A=\mathbb{R}$ подобного изоморифизма не существует, так как в \mathbb{R} нет соседних элементов, а в $\mathbb{R}\times_{lex}\mathbf{2}$ есть.

5 Решение

Пункт 1

Предложение. Пусть $f:M\longrightarrow N$ — изоморфизм. Тогда $M_{\leqslant x}=\{y\in M\mid y\leqslant x\}$ изоморфно $N_{\leqslant f(x)}=\{y\in N\mid y\leqslant f(x)\}.$

Доказательство. Будем стоить изоморфизм между $M_{\leqslant x}$ и $N_{\leqslant f(x)}$. Возьмём сужение h функции f на множество $M_{\leqslant x}$, заданное по формуле h(a)=f(a). Докажем, что h является искомым изоморфизмом. Вопервых, если $y\leqslant x$, то $h(y)=f(y)\leqslant f(x)$, поэтому $h(M_{\leqslant x})\subseteq N_{\leqslant f(x)}$. Во-вторых, сужение функции f^{-1} на $N_{\leqslant f(x)}$ отображается в $M_{\leqslant x}$ и является обратной функцией для h, так как $h(f^{-1}(y))=f(f^{-1}(y))=y$ и $f^{-1}(h(y))=f^{-1}(f(y))=y$. Значит, h является монотонной биекцией (как сужение монотонной функции), обратная к которой тоже монотонна. Следовательно, h — искомый изоморфизм.

Пункт 2

Предостережение. Ниже мы будем рассматривать символ f(A) в двух значениях: если f отображает $\mathcal{P}(X)$ в $\mathcal{P}(X)$, то f(A) – это просто образ A при этом отображении. Но если f отображает X в X, то за f(A) обозначается объединение (по всем a из A) образов f(a). Автор решения прекрасно понимает эту тонкость и поэтому просит рецензентов также обратить на неё внимание.

Покажем, что между перестановками множества X и изоморфизмами ($\mathcal{P}(X),\subseteq$) на себя существует взаимно однозначное соответствие.

Сначала по каждой перестановке φ построим изоморфизм. Пусть f_{φ} отображает $(\mathcal{P}(X),\subseteq)$ в $(\mathcal{P}(X),\subseteq)$ по правилу $f_{\varphi}(A)=\varphi(A)$, для $A\in\mathcal{P}(X)$. Заметим, что так как φ – перестановка, то существует обратная перестановка φ^{-1} . Легко проверить, что $\varphi^{-1}(A)=f_{\varphi}^{-1}(A)$. Кроме того, f_{φ} и f_{φ}^{-1} монотонны. Значит, f_{φ} – изоморфизм.

Теперь по каждому изоморфизму $f: (\mathcal{P}(X), \subseteq) \longrightarrow (\mathcal{P}(X), \subseteq)$ построим перестановку φ_f множества X. Пусть $x \in X$. Заметим, что единственные множества, имеющие ровно два подмножества – это одноэлементные множества. Значит, при изоморфизме одноэлементное множество всегда переходит в одноэлементное множество. Более того, так как $A \subseteq B$ тогда и только тогда, когда $f(A) \subseteq f(B)$, то, в частности, f сохраняет свойство множеств "иметь n элементов", поскольку в том случае, когда конечные множества имеют равное число подмножеств, они сами состоят из одинакового числа элементов. Итак, множество $f({x})$ является одноэлементным: $f({x}) = {a}$. Теперь понятно, как нужно определять перестановку φ_f : возьмём $\varphi_f(x) = a$ и докажем, что φ_f – биекция. Если $\varphi_f(x) = \varphi_f(y)$, то $f(\{x\}) = f(\{y\}) = \{a\}$, но f – инъекция, поэтому $\{x\} = \{y\}$ и x = y. Таким образом, φ_f – инъекция. Пусть $y \in X$. По предыдущим рассуждениям, прообраз одноэлементного множества является одноэлементным, поэтому $f^{-1}(\{y\}) = \{x\}$. Тогда, легко видеть, $\varphi(x) = y$. Значит, φ_f – сюръекция. Итого, φ_f – биекция, то есть перестановка.

Чтобы завершить описание всех изоморфизмов, нам нужно вспомогательное утверждение.

Лемма. Пусть $f: (\mathcal{P}(X), \subseteq) \to (\mathcal{P}(X), \subseteq)$ – изоморфизм. Тогда

$$f(A) = \bigcup_{a \in A} f(\{a\}). \tag{5.1}$$

Доказательство. Докажем равенство двумя включениями. Пусть $x \in f(A)$. Тогда $\{x\} \subseteq f(A)$, что эквивалентно $f^{-1}(\{x\}) \subseteq A$. Кроме того,

 $f^{-1}(\{x\})$ является одноэлементным множеством (скажем, $\{a\}$ для $a\in A$). Тогда

$$x \in \{x\} = f(\{a\}) \subseteq \bigcup_{a \in A} f(\{a\}).$$

Таким образом, $f(A) \subseteq \bigcup_{a \in A} f(\{a\})$. Обратно: пусть $x \in \bigcup_{a \in A} f(\{a\})$. Тогда $x \in f(\{a\})$ для некоторого $a \in A$. Значит, $\{x\} = f(\{a\})$. Так как $\{a\} \subseteq A$, то $f(\{a\}) \subseteq f(A)$, то есть $x \in \{x\} \subseteq f(\{a\}) \subseteq f(A)$.

Мы определили две функции: $\varphi \longmapsto f_{\varphi}$ из множества всех перестановок X в множество всех изоморфизмов $(\mathcal{P}(X),\subseteq)$ и $f \longmapsto \varphi_f$ из множества всех изоморфизмов $(\mathcal{P}(X),\subseteq)$ в множество всех перестановок X. Покажем, что $f_{\varphi_f}=f$ и $\varphi_{f_{\varphi}}=\varphi$, откуда будет получена биекция между двумя рассматриваемыми множествами.

Первое равенство следует из леммы:

$$f_{\varphi_f}(A) = \varphi_f(A) = \bigcup_{a \in A} \{\varphi_f(a)\} = \bigcup_{a \in A} f(\{a\}) \stackrel{(5.1)}{=} f(A).$$

Для доказательства второго равенства введем локальное обозначение: определим $\square\{a\}$ как единственный элемент множества $\{a\}$. Тогда

$$\varphi_{f_{\varphi}}(x) = \Box f_{\varphi}(\{x\}) = \Box \varphi(\{x\}) = \varphi(x),$$

что и требовалось доказать. Таким образом, мы установили биекцию между множеством всех перестановок X и множеством всех изоморфизмов на $(\mathcal{P}(X),\subseteq)$. В частности, если X конечно и |X|=n, то количество изоморфизмов равно n!.

Пункт 3

Предложение. Множества $\mathbb{N}, \mathbb{Z}, \mathbb{N} \times_{nat} \mathbb{N}, \mathbb{N} \times_{lex} \mathbb{N}, \mathbb{Z} \times_{nat} \mathbb{Z}, \mathbb{Z} \times_{lex} \mathbb{Z}, \mathbb{Q}$ попарно неизоморфны.

Доказательство. Выделим уникальные наборы свойств:

Множество	ЛИН	наим	мин	предельн	Holes
N	Да	Да		Нет	
\mathbb{Z}	Да	Нет			0
$\mathbb{N} \times_{nat} \mathbb{N}$	Нет		Да		
$\mathbb{N} \times_{lex} \mathbb{N}$	Да	Да		Да	
$\mathbb{Z} \times_{nat} \mathbb{Z}$	Нет		Нет		
$\mathbb{Z} \times_{lex} \mathbb{Z}$	Да	Нет			\mathbb{Z}
Q	Да	Нет			I

В таблице столбцы лин, наим, мин, предельн, Holes, означают, соответственно, линейность, существование наименьшего элемента, существование минимального элемента, существование предельного элемента и пространство отверстий. Таких свойств достаточно для того, чтобы доказать попарную неизоморфность.

Пункт 4

Предложение. Множества $\mathbb{Q}, \mathbb{Z}, \mathbb{R}$ и $\mathbb{R} \times_{lex} \mathbb{R}$ попарно неизоморфны. Доказательство. Выделим уникальные наборы свойств:

Множество	счёт	плот	Holes
\mathbb{Q}	Да	Да	
\mathbb{Z}	Да	Нет	
\mathbb{R}	Нет	Да	0
$\mathbb{R} \times_{lex} \mathbb{R}$	Нет	Да	\mathbb{R}

В таблице столбцы счёт, плот, полн, Holes означают, соответственно, счётность, плотность и пространство отверстий.

Таких свойств достаточно для того, чтобы доказать попарную неизоморфность.

Итак, множества

$$\{0\}, \mathbb{Q}, \mathbb{Z}, \mathbb{R}, \mathbb{R} \times_{lex} \mathbb{R}$$

попарно неизоморфны. По первой теореме о сокращении для $C=\mathbb{R},$ множества

$$\mathbb{R}, \mathbb{Q} \times_{lex} \mathbb{R}, \mathbb{Z} \times_{lex} \mathbb{R}, \mathbb{R} \times_{lex} \mathbb{R}, \mathbb{R} \times_{lex} \mathbb{R} \times_{lex} \mathbb{R}$$

попарно неизоморфны. Осталось показать, что \mathbb{Q} попарно не изоморфно этим множествам. Но это очевидно: \mathbb{Q} счётно, а все остальные множества – нет. Таким образом, в этом пункте все множества попарно неизоморфны.

Пункт 5

Хотелось бы воспользоваться теоремой о сокращении справа на \mathbb{Z} в \times_{nat} , но такой теоремы в общем случае нам доказать не удалось. Поэтому придётся доказывать неизоморфность напрямую.

Докажем, что не существует изоморфизма между $(\mathbb{Z} \times_{lex} \mathbb{Z}) \times_{nat} \mathbb{Z}$ и $(\mathbb{Z} \times_{lex} \mathbb{N}) \times_{nat} \mathbb{Z}$. Допустим, что f – такой изоморфизм и покажем, что такое невозможно.

Сначала докажем, что любое линейно упорядоченное подмножество X в $(\mathbb{Z} \times_{lex} \mathbb{N}) \times_{nat} \mathbb{Z}$ является полным. Пусть $A, B \subseteq X$ и $A \leqslant B$. Рассмотрим проекции

$$X_{1} = \{x \in \mathbb{Z} \times_{lex} \mathbb{N} \mid \exists n : (x, n) \in X\} \subseteq \mathbb{Z} \times_{lex} \mathbb{N},$$

$$X_{2} = \{n \in \mathbb{Z} \mid \exists x : (x, n) \in X\} \subseteq \mathbb{Z},$$

$$A_{1} = \{x \in \mathbb{Z} \times_{lex} \mathbb{N} \mid \exists n : (x, n) \in A\} \subseteq X_{1},$$

$$A_{2} = \{n \in \mathbb{Z} \mid \exists x : (x, n) \in A\} \subseteq X_{2},$$

$$B_{1} = \{x \in \mathbb{Z} \times_{lex} \mathbb{N} \mid \exists n : (x, n) \in B\} \subseteq X_{1},$$

$$B_{2} = \{n \in \mathbb{Z} \mid \exists x : (x, n) \in B\} \subseteq X_{2}.$$

Тогда $A_1 \leqslant B_1$ и $A_2 \leqslant B_2$. Легко проверить, что X_1 и X_2 удовлетворяют аксиоме полноты (в общем случае, разумеется, подмножество полного не обязательно полно). Значит, существуют $\xi_1 \in X_1$ и $\xi_2 \in X_2$ такие, что $A_1 \leqslant \xi_1 \leqslant B_1$ и $A_2 \leqslant \xi_2 \leqslant B_2$. Тогда, очевидно, $(\xi_1, \xi_2) \in X$ и $A \leqslant (\xi_1, \xi_2) \leqslant B$, что и требовалось.

С одной стороны, $(\mathbb{Z} \times_{lex} \mathbb{Z}) \times_{nat} \{0\} \cong \mathbb{Z} \times_{lex} \mathbb{Z}$ и $\operatorname{Holes}(\mathbb{Z} \times_{lex} \mathbb{Z}) \cong \mathbb{Z}$. С другой стороны, сужение f осуществляет изоморфизм между $(\mathbb{Z} \times_{lex} \mathbb{Z}) \times_{nat} \{0\}$ и образом $f((\mathbb{Z} \times_{lex} \mathbb{Z}) \times_{nat} \{0\})$. Таким образом, в $(\mathbb{Z} \times_{lex} \mathbb{N}) \times_{nat} \mathbb{Z}$ нашлось линейно упорядоченное подмножество с нетривиальным пространством отверстий, хотя мы только что показали, что любое линейно упорядоченное подмножество в $(\mathbb{Z} \times_{lex} \mathbb{N}) \times_{nat} \mathbb{Z}$ является полным. Значит, изоморфизма f не существует.

Докажем, что не существует изоморфизма между $\mathbb{Z} \times_{lex} (\mathbb{Z} \times_{nat} \mathbb{Z})$ и $(\mathbb{Z} \times_{lex} \mathbb{N}) \times_{nat} \mathbb{Z}$.

Сначала докажем, что в ($\mathbb{Z} \times_{lex} \mathbb{N}$) $\times_{nat} \mathbb{Z}$ не существует строго убывающего ограниченного снизу набора элементов, то есть бесконечной цепочки $x < \ldots < x_3 < x_2 < x_1$ (то есть любая такая цепочка стабилизируется в нестрого убывающую). Действительно, допустим, что такая есть. Рассмотрим проекции этой ограниченной последовательности на $\mathbb{Z} \times_{lex} \mathbb{N}$ и \mathbb{Z} и обозначим их за $y < \ldots < y_3 < y_2 < y_1$ и $z < \ldots < z_3 < z_2 < z_1$. Очевидно, в \mathbb{Z} такой цепочки z_i нет. Значит, начиная с некоторого места, $z_{n+1} = z_n$ для всех n. Аналогично, легко понять, что цепочка y_i в $\mathbb{Z} \times_{lex} \mathbb{N}$ должна стабилизироваться. Следовательно, и цепочка x_i должна стабилизироваться, что и требовалось.

Наконец, в $\mathbb{Z} \times_{lex} (\mathbb{Z} \times_{nat} \mathbb{Z})$ такая цепочка, очевидно, есть. Например, $x_i = (0, (-i, 0))$. Значит, множества $\mathbb{Z} \times_{lex} (\mathbb{Z} \times_{nat} \mathbb{Z})$ и $(\mathbb{Z} \times_{lex} \mathbb{N}) \times_{nat} \mathbb{Z}$ не изоморфны.

Теперь докажем неизоморфность $\mathbb{Z} \times_{lex} (\mathbb{Z} \times_{nat} \mathbb{Z})$ и $(\mathbb{Z} \times_{lex} \mathbb{Z}) \times_{nat} \mathbb{Z}$. Рассмотрим множество $Inc_{\mathbb{Z} \times_{lex} (\mathbb{Z} \times_{nat} \mathbb{Z})}$ всех несравнимых с (0,0,0) эле-

ментов в $\mathbb{Z} \times_{lex} (\mathbb{Z} \times_{nat} \mathbb{Z})$ и множество $Inc_{(\mathbb{Z} \times_{lex} \mathbb{Z}) \times_{nat} \mathbb{Z}}$ всех несравнимых с (0,0,0) элементов в $(\mathbb{Z} \times_{lex} \mathbb{Z}) \times_{nat} \mathbb{Z}$. Покажем, что в $Inc_{\mathbb{Z} \times_{lex} (\mathbb{Z} \times_{nat} \mathbb{Z})}$ любая цепочка вида $x_1 < x_2 < x_3 < \ldots < x$ стабилизируется.

Действительно, пусть $x_1 < x_2 < x_3 < \ldots < x$ и все элементы x_i не сравнимы с (0,0,0). Тогда $x_i = (0,x_i',x_i'')$, где $x_i' < 0$ и $x_i'' > 0$ или $x_i' > 0$ и $x_i'' < 0$. Тогда $x_i' < x_1$ и $x_i'' < x_2$, где $x = (0,x_1,x_2)$. Но так как x_i' и x_i'' можно отождествить в последовательностями в \mathbb{Z} , то они обязаны стабилизироваться. Значит, и x_i обязано стабилизироваться.

Теперь покажем, что в $Inc_{(\mathbb{Z} \times_{lex}\mathbb{Z}) \times_{nat}\mathbb{Z}}$ существуют нестабилизирующиеся цепочки возрастающих ограниченных элементов. Например, можно взять $x_i = (-1, i, 1)$. Легко проверить, что эта цепочка ограничена элементом (0, 0, 1) и является возрастающей. Таким образом, $\mathbb{Z} \times_{lex} (\mathbb{Z} \times_{nat} \mathbb{Z})$ и $(\mathbb{Z} \times_{lex} \mathbb{Z}) \times_{nat} \mathbb{Z}$ не изоморфны.

Итак, в пункте 5 все множества не изоморфны.

Пункт 6

Легко проверить, что

$$(A \times_{lex} B) \times_{lex} C \cong A \times_{lex} (B \times_{lex} C)$$

И

$$(A \times_{nat} B) \times_{nat} C \cong A \times_{nat} (B \times_{nat} C),$$

то есть умножения \times_{lex} и \times_{nat} ассоциативны. Как показал пункт 5, при расстановке скобок в смешанном произведении \times_{lex} и \times_{nat} получаются разные частично упорядоченные множества. Значит, контролировать изоморфность двух множеств, получающихся с помощью двух таких произведений, не просто. Кроме того,

$$A \times_{nat} B \cong B \times_{nat} A$$
,

так что умножение \times_{nat} коммутативно. Однако \times_{lex} , не коммутативно, как показывает пример $\mathbb{N} \times_{lex} \mathbb{R}$: пространство отверстий $\mathrm{Holes}(\mathbb{R} \times_{lex} \mathbb{N})$ изоморфно \mathbb{R} , а $\mathrm{Holes}(\mathbb{N} \times_{lex} \mathbb{R}) \cong \mathbb{N}$, как нетрудно видеть. Итого, остаётся пользоваться теоремами о сокращении.